Selasa, 12 November 2013

Segitiga

Segitiga

Pengertian segitiga











  • segitiga yaitu bangun yang dibatasi tiga ruas garis yang berhimpit ujung-ujungnya.
  • segitiga yaitu tiga titik yang tidak segaris, dua dua dihubungkan sehingga terbentuk tiga ruas garis, gabungan tiga ruas garis.
Unsur-unsur segitiga
  • titik-titik sudut, ada 3
  • ruas garis / sisi-sisi, ada 3
Notasi untuk segitiga ABC yaitu






Pada sebuah segitiga ABC, sudut-sudut segitiga dapat pula disebut sudut dalam.

Sudut-sudut luar segitiga, sudut bersisiannya sudut dalam.







Teorema 1
sudut luar sebuah segitiga sama dengan jumlah kedua sudutnya yang lain.
Akibat
sudut luar dari sebuah sudut segitiga selalu lebih besar dari salah satu sudutnya yang lain.







Teorema 2
jumlah sudut sebuah segitiga sama dengan

180°





Sifat-sifat segitiga
  •  dalam sebuah segitiga, jumlah dua sisinya lebih panjang dari sisi lainnya
  •  jumlah ukuran sudut-sudutnya sama dengan sudut lurus
Macam-macam segitiga
a. berdasarkan ukuran sudut-sudutnya
  1. segitiga lancip : segitiga yang semua sudutnya lancip
  2. segitiga siku-siku  : segitiga yang  salah satu sudutnya merupakan sudut siku-siku
  3. segitiga tumpul : segitiga yang salah satu sudutnya tumpul
b. berdasarkan ukuran sisi-sisinya
  1. segitiga sama sisi : segitiga yang panjang ketiga sisinya sama
  2. segitiga sama kaki : segitiga yang panjang dua sisinya sama
  3. segitiga sembarang : segitiga yang ketiga sisinya tidak sma panjang
Garis-garis istimewa pada segitiga
1. Garis tinggi
  • yaitu garis yang dibuat melalui suatu titik sudut dan tegak lurus ke sis depannya.
  • perpotongan garis tinggi dengan sisi didepannya disebut titik kaki.
  • titik pertemuan ketiga garis tinggi disebut titik tinggi.
2. Garis bagi
  • yaitu garis yang membagi sudut menjadi dua besar.
  • titik pertemuan ketiga garis bagi disebut titik bagi.
  • titik bagi menjadi titik pusat dalam lingkaran yaitu lingkaran yang menyinggung ketiga sisi segitiga.
3. Garis berat
  •  yaitu garis yang dibuat dari slah satu titik sudut ke titik pertengahan sisi di depannya.
  • titik pertemuan ketiga garis berat disebut titik berat.
  • titik berat membagi setiap ruas garis dengan perbandingan 2:1.
4. Sumbu sisi
  • yaitu garis yang ditarik tegak lurus sisi mealau pertengahan sisi itu.
  • ketiga susmbu sisi berpotongan di satu titik (titik O).
  • titik O menjadi titik pusat lingkaran luar yaitu lingkaran yang melalui ketiga titik sudut segitiga.
Kekongruenan segitiga
  • dua segitiga yang kongruen (sama dengan sebangun) yaitu dua segitiga dapat tepat diimpitkan. 
  • dua segitiga kongruen yaitu sisi-sisi dan sudut-sudut yang bersesuaian sama ukurannya.
Teorama 3
dua segitiga akan kongruen apabila dua sisinya sama panjang dan sudut apitnya sama besar (ss-sd-ss).

Teorema 4
dua segitiga akan kongruen apabila satu sisinya sama panjang dan sudut-sudutnya pada ujung sisi itu sepasang-sepasang sama besar (sd-ss-sd).

Teorema 5
dua segitiga akan kongruen apabila ketiga sisinya sepasang-sepasang sama panjang (ss-ss-ss).

Lukisan segitiga
syarat keterlukisan sebuah segitiga yaitu harus diketahui tiga unsur yang independen (bebas/tidak bergantung satu sama lain)

Kriteria keterlukisan sebuah segitiga
sebuah segitiga dapat dilukis jika diketahui:
  • ss-ss-ss
  • ss-sd-ss
  • sd-ss-sd
  • ss-sd-sd
  • ss-ss-sd

Tidak ada komentar:

Posting Komentar